Journal of Organometallic Chemistry, 172 (1979) 467-477
© Elsevier Sequoia S A Lausanne - Printed in The Netherlands

HALOGEN CLEAVAGE REACTIONS OF cis-(threo-PhCHDCHD) $\operatorname{Mn}(\mathrm{CO})_{4} \mathrm{PEt}_{3}$

D DONG and MC BAIRD*
Department of Chemistry, Queen's University,
Kingston, Canada 7KL 3iv6
(Recelved January 31 st, 1979)

SUMMARY
Halogen cleavage reactions of c 1 s -(threo- PhCHDCHD$) \mathrm{Mn}(\mathrm{CO})_{4} \mathrm{PEt}_{3}$ (3) are studied in detail and are found to proceed either predominantly with retention or inversion, or non-stereospecifically, depending on reaction conditions. Reaction mechanisms involving $S_{E^{2}}$ (inversion), $S_{E}{ }^{2}$ (retention) and S_{E} (oxidative) processes are proposed, demonstrating that halogen cleavage reactions of $\underset{\sim}{3}$ straddle the mechanistic borderline between electrophilic substitution and oxidation processes of transition metal alkyl compounds

Reactions in which cleavage of transition metal-carbon σ bonds is induced by electrophilic reagents such as the halogens (1) and mercury (II) compounds (2) have long been known [1], and have often been useful as aids in the characterizati of new alkylmetal compounds

$$
\begin{align*}
& \mathrm{RML}_{n}+X_{2}-\mathrm{RX}+\mathrm{XML}_{n} \tag{1}\\
& \mathrm{RML}_{n}+\mathrm{HgX}_{2} \rightarrow \mathrm{RHgX}^{2}+\mathrm{XML}_{n} \tag{2}
\end{align*}
$$

$\mathrm{R}=$ alkyl, aryl, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{L}=$ other ligands
Considerable attention has been devoted in recent years to mechanistic studies of these types of reactions, resulting in the recognition of at least three major pathways by which an alkylmetal compound may interact with a potential
electrophilic reagent, E Two of these involve either frontside (1) or backside (2) $S_{E} 2$ attack by E on the α-carbon atom

1

2

Transition states $\underset{\sim}{1}$ and $\underset{\sim}{2}$ result in retention and inversion of configuration at carbon, respectively, the corresponding mechanisms generally being referred to as $S_{E} 2$ (retention) and $S_{E} 2$ (inversion) $[2,3]$ Halogens probably cleave alkylmercury [4] and -zirconium [5] compounds by an $S_{E} 2$ (retention) process, while mercury (II) compounds appear to cleave alkylcobaloxime compounds by an $S_{E} 2$ (inversion) process [6-11] Alkyltin compounds, on the other hand, can be cleaved by halogens with both retention and inversion of configuration [12-14], indicating that both processes can occur

The third mode of cleavage does not involve the halogen or mercury (II) behaving as a conventional electrophile, but rather as a one- or two-electron oxidizing agent The initial step in halogen cleavage reactions of alkylcobaloximes $R_{C o}{ }^{I I I}(D H)_{2} L(R=a l k y l$ group, $D H=$ dimethylglyoximate anion, $L=$ neutral ligand), for instance, is almost certainly the formation of the cobalt(IV) intermediate, $\left[R C o{ }^{I V}(\mathrm{DH})_{2} L\right]^{+}$. Cleavage of the cobalt-carbon bond actually occurs via nucleophilic displacement, with inversion of configuration, of the metal from the a-carbon atom by halide ion $[6,7,15-21]$ Similar but as yet undefined species have been implicated in cleavage reactions of compounds of the type $n^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeCOLR}$ ($L=C 0$, tertiary phosphine) by both the halogens $[1,22-24]$ and mercury (II) halides $[22,24,25]$ This general type of reaction will hereafter be referred to as an S_{E} (oxidative) process

Stereochemical information has been very important in the elucidation of the mechanisms of the above reactions, and we have oreviously utilized the primary alkyl ligand, threo- $\alpha, \beta-d i d e u t e r o p h e n e t h y l$ (threo-PhCHDCHD-) to study the stereochemical changes durina a wide variety of alkyl cleavage, transfer and migration
reactions [1,26-28] In an atiempt to furìher studies of electrophilic cleavage reactions of cis- (threo- PhCHDCHD$) \mathrm{Mn}(\mathrm{CO})_{4} \mathrm{PEt}_{3}(3)$ A preliminary account of this work has appeared [29]

EXPERIMENTAL

IR spectra were run on a Perkin Elmer 180 Soectrometer, NMR spectra in both CW and FT modes on a Bruker HX60 Spectrometer Compound 3 was orepared as described in the 1 iterature [28], from $\mathrm{K}\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{PEt}_{3}\right]$ and erythro- $\mathrm{PhCHDCHDO}^{\top}$, while $\mathrm{cis}^{2}-\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Mn}(\mathrm{CO})_{4} \mathrm{PEt}_{3}$ labelled at the α-carbon to the extent of $5 \% \mathrm{wl}$ th carbon-13 was prepared similarly using labelled tosylate [1], the ${ }^{13} \mathrm{C}$: Mm spectrum exhibits resonances at $\delta 709\left(d, \alpha-\underline{C H}_{2}, J_{C P}=11 \mathrm{~Hz}\right), \delta 440\left(d, \beta-\underline{C H}_{2}, J_{C P}=4 \mathrm{~Hz}\right)$, $\delta 183\left(\mathrm{~d}, \mathrm{PCH}_{2},{ }^{\mathrm{J}} \mathrm{CP}=23 \mathrm{~Hz}\right), \delta 72\left(\mathrm{~S}, \mathrm{CH}_{3}\right)$, as well as a multiplet in the phenyl region All solvents were dried and deoxyqenated before use

Halogenation reactions were normally carried out by adding a solution of the haloqen to a stirred solution of an equimolar amount of 3 under notrogen at room temperature The reaction mixtures were generally stirred for 45 min, after which the solvent was removed under reduced pressure The residue was then dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed throuah a short alumna column Elution with $5 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in oetroleum ether qave the ohenethyl halide, while elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the manaanese oroduct, $\mathrm{cis}^{-\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right) \mathrm{X}}$ Yields of the latter, where calculated, were about $60^{c} \stackrel{ }{\circ}$

The phenethyl halides were identified on the basis of their ${ }^{1} H$ NMR spectra []], the manganese-containing products largely on the basis of their IR spectra in the carbonyl reqion $[30,31]$ A sample of the iodide compound, cis-i9n(CO$)_{3}\left(\mathrm{PEt}_{3}\right)$ I analysed correctly (Calc for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{IMnO}_{4} \mathrm{P} \quad \mathrm{C}, 2915, \mathrm{H}, 367$ Found C , 2888 , H, 483 , while $v_{\text {Co }}$ (petroleum ether) for the chloro $(2088,2023,2005,1946)$, bromo (2086,2021,2003,1948) and iodo (2079,2015,1997,1951) compounds compare very well with values in the literature for very similar compounds $[30,31]$

RESULTS AND DISCIJSSION
In most cases the halogenation reactions proceeded smoothly, as in (3), and the relative amounts of the threo- and erythro-PhCHDCHDX could be readily
determined The products from the reactions

$$
\begin{gather*}
\text { CIS-PhCHDCHDMn }(\mathrm{CO})_{4} \mathrm{PEt}_{3}+\mathrm{X}_{2}+\text { cis }^{\text {Mn }(C O)_{4}\left(\mathrm{PEt}_{3}\right) \mathrm{X}+\mathrm{PhCHDCHDX}} \tag{3}\\
\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}
\end{gather*}
$$

are listed in Table 7
table 1
Degree of Retention of Confiquration of the Cleavage Products (\%) ${ }^{\text {a }}$

Solvent/Reagent	Cl_{2}	Br_{2}	I_{2}	$\mathrm{ICl}^{\mathrm{b}}$
$\mathrm{n}^{-\mathrm{C}_{5} \mathrm{H}_{72}}$	17	33	68	<5
$\mathrm{C}_{6} \mathrm{H}_{6}$	13	33	$7 n$	<5
CS_{2}	12	22	72	-
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48	42	63	<5
MeCN	49	52	42	<5
MeNO_{2}	67	29	54	-

a
$\pm 7 \%$
b
Product is predominantly erythro-PhCHDCHDI, wh th traces of threo-PhCHOCHDC1

As can be seen from the Table, the stereochemistry of the chlorination and bromination reactions is strongly solvent-dependent, albeit in a somewhat erratic manner. Inversion is certainly preferred in the less dolar solvents, but becomes less important in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, MeCN and MeNO_{2} The iodination reactions, on the other hand, groceed with predominant retention of configuration in nonpolar solvents, and are essentially non-stereospecific in polar solvents There is a noticeable increase in the dearee of retention in non-bolar solvents on goinq from chlorine to iodine. The cleavaqe reactions with ICT, on the other hand, are highly stereospecific, producing in all cases phenethyl rodide with
essentially complete inversion of configuration and traces of phenethyl chloride with essentially complete retention of configuration

Interestingly, chlorine, bromine and lodine cleavage of 3 labelled with carbon-13 in both n-pentane and methylene chloride gave products in which methylene scrambling had not occurred [1]

The wide variation in stereospecificity suggests stronqly that halogen cleavage reactions of 3 can occur via at least two, and probably more competing pathways, although attempts to rationalize all the data in detall would seem to be futile at present The lack of scrambling of the methylene carbons is very important (examples chosen would appear to be representative), as it shows that the phenonium ion-like behaviour exhibited by the compound threo-PhCHDCHDFe(CO) 2_{2} $\left(n^{5}-C_{5} H_{5}\right)$ in its halogen cleavage reactions [1] does not occur in the manganese system. The reasons for the difference are not at all obvious, but the PhCHDCHDgroup $1 s$ clearly a "good" primary alkyl ligand for studying the stereochemistry of cleavage reactions of alkylmanganese compounds

The high deqree of inversion observed for chlorination and bromination reactions in non-polar solvents 15 most likely a result of an S_{E} 2(inversion) process, as in 2 , involving overlap of the filled manqanese-carbon σ bond (the HOMO) with the empty σ^{*} orbital of the halogen (the LUMO) [1] Although an $S_{E}{ }^{2}$ (retention) mechanism (1) may well be responsible for the significant retention of configuration in non-polar solvents, there would appear to be no reason why such a process, involving the same orbitals [l], would become more important for the heavier halogens The increasing retention of configuration observed for the heavier halogens in non-polar solvents must therefore be indicative of a different mechanism, presumabiy involving electron transfer, 1 e an S_{E} (oxidative) process such as (4) or (5).

$$
\begin{equation*}
3+\frac{1}{2} \mathrm{X}_{2} \rightarrow\left[\mathrm{PhCHDCHDMn}{ }^{\mathrm{II}}(\mathrm{CO})_{4} \mathrm{PEt}_{3}\right]^{+}+\mathrm{X}^{-} \tag{4}
\end{equation*}
$$

4

$$
\begin{equation*}
3+X_{2} \rightarrow\left[\mathrm{PhCHDCHDMn}^{\mathrm{III}}(\mathrm{CO})_{4} \mathrm{PEt}_{3} \mathrm{X}\right]^{+}+\mathrm{X}^{-} \tag{5}
\end{equation*}
$$

Intermediate $\underset{\sim}{4}$ would be analogous to and isoelectronic with that which is believed to occur during halogenation reactions of alkylcobaloximes [6,7,15-21], and would similarly be expected to yield phenethyl halide with inversion of configuration via nucleophile displacement of, presumably, a manganese(0) species by halide ion. Intermediate $\underset{\sim}{5}$ is analoaous to that which is believed to occur during halogenation and mercuration reactions of combounds of the type $n^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeCOLR}$ [1,22-26] It could yleld phenethyl halide with retention of configuration via a reductive elimination process [l], or with inversion of configuration via nucleophilic displacement of $\operatorname{cis}-\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{PEt}_{3} \mathrm{X}$ by free halide ion Reductive elimination from $\underset{\sim}{5}$ would appear to be the best explanation for the observations under consideration, although it is not obvious why the heavier haloqens would tend to prefer an electron transfer process over either of the more conventional $S_{E} 2$ processes Steric factors are likely unimportant, but it seems possible that, as the halogens become larger and their σ^{*} orbitals more diffuse, overlap with the metal-carbon o orbital should decrease, making an S_{E} 2 process less favourable. It is also likely that solvation problems would be less severe for an ionic iodide complex intermediate than for similar chloride or bromide complexes Nucleophilic attack by X^{-}on the α-carbon atom of $\underset{\sim}{5}$ can be ruled out as the process leading to predominant inversion during chlorination and bromination reactions in non-polar solvents, as nucleophilic properties of the halides decrease in the order $\mathrm{I}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}$, in contrast to the observed trend Similarly, chain radical processes as contributors to observations of non-stereospecificity may possibly be ruled out, as chain processes should be most important for chlorination reactions, aqain in contrast to observations (Radical processes are often difficult to prove or disprove in this type of chemistry, however [1], and a more definitive statement must await the results of planned kinetics studies) Thus, in non-polar solvents, halogenation reactions seem to occur mainly by two competing processes, S_{E} 2(inversion) and oxidation to $\underset{\sim}{5}$, followed by reductive elimination

The qeneral increase in the degree of retention of configuration for the chlorination and bromination reactions in more polar solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}\right.$, MeNO_{2}) most likely occurs because of an increase in importance of the S_{E} (oxidative)
process, (5), as reactions involving ionic intermediates are qenerally favoured in polar solvents There certainly is no obvious reason why an $S_{E} 2$ (retention) process should become more important than an S_{E} (inversion) process on going to more polar solvents, and epimerization of product PhCHDCHDX by exchange with free halide ion can be ruled out because such exchange reactions are found to be very slow for phenethyl chloride and bromide Interestingly bromination in $\mathrm{CH}_{2} \mathrm{CT}_{2}$ in the presence of a ten-fold excess of bromide ion (as the tetraethylammonium salt) does not lead to increased inversion but, rather, to a slight increase in retention, again sugqesting that nucleophilic attack by halide ion on an oxidized intermediate is relatively unimportant

In the case of iodination reactions in the same polar solvents, the observed lack of stereospecificitv may be a result of stabilization of the intermediate, [threo- $\mathrm{PhCHDCHDMn}(\mathrm{CO})_{4} \mathrm{PEt}_{3} \mathrm{I}$]I, by the polar solvents The results could then be rationalized if bimolecular nucleophilic disolacement of cis-Mn(CO) $\mathbf{C l}_{4}\left(\mathrm{PEt} \mathrm{C}_{3}\right)$ I from the α-carbon atom by the ionic lodide ion were to become competitive (as described above for alkylcobaloximes) Some edmerization via exchange with free lodide ion could also occur, althouqh this does not generally appear to be a significant factor

The cleavage reactions with ICl are unique in beinq highly stereospecific for both the major product, PhCHDCHDI (inversion) and the minor product, PhCHDCHDC1 (retention), althouqh again interpretation of the data remains ambiquous The complete lack of solvent dependence suggests that some unique property of ICl may be dominating the course of the reaction, and we suqgest that the key factor with the interhalogen may be its polarization The relatively electropositive lodine atom of ICl should be more electrophilic, and the observed product distribution 15 consistent with the major dathway involving an S_{E} (inversion) process in which the rodine end of the ICl approaches the backside of the α-carbon atom While it miqht seem contradictory that ICl prefers an S_{E} (inversion) process while I_{2} does not, reaction of the interhaloaen would probably be aided by contraction of the radial function of the comoonent of the σ^{*} orbital on iodine by the electroneative chlorine atom, thus allowina significant overlap with the filled manqanese-carbon o orbital

The formation, with essentially complete retention of confiquation, of the minor product, PhCHDCHDCI, in the ICl reactions is consistent with an S_{E} (oxidative) process, as in (5), followed by reductive elimination from small amounts of the oxidized intermediate $\left[\mathrm{PhCHDCHDMn}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}\right]$ I. Furthermore, since the major product, erythro-PhCHDCHDI, could also be formed by nucleophilic attack of the ronic iodide on the postulated chloro complex, wh th displacement of cis $-\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}$, then an S_{E} (oxidative) brocess appears to rationalize formation of erythro-PhCHDCHDI as well as does an S_{E} (inversion) process

The general pattern of results in Table l, however, leads us to favour the latter As stated above, the iodination reactions appear to be dominated by the S_{E} (oxidative) process of (5), reductive elimination of phenethyl iodide from $\underset{\sim}{5}(\mathrm{X}=\mathrm{I})$ being very competitive with nucleobhilic attack of rodide on $\underset{\sim}{5}$ followed by elimination of $\mathrm{cis}-\mathrm{Mn}\left(\mathrm{CO}_{4}\left(\mathrm{PEt}_{3}\right) \mathrm{I}\right.$ It seems highly unlikely therefore, that reductive elimination from an intermediate such as [PhCHDCHDMn $(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right) \mathrm{Cl}$ II would be insigmificant

Cleavage reactions with interhalogens have been investigated previously, and it is interesting to note that complexes of the type $n^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeCOLR}$, which are belleved to react via an S_{E} (oxidative) process, are cleaved by ICl to yield predominantly alkyl chloride $[1,24]$, while complexes of the type $\left[\operatorname{RCr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$, which are belleved to react via an S_{E} (inversion) process, are cleaved by IBr to yield exclusively alkyl iodide [32] Our results thus appear to be quite consistent with observations on the chromium system.

Our results are also consistent with a very brief reoort by Johnson and Pearson [33], who showed that bromine cleavage of optically active $\mathrm{Me}^{*} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{Mn}(\mathrm{CO})_{5}$ in tetrahydrofuran proceeds with partial retention of configuration On the other hand, the high stereospecificity we observe at the manganese is probably not significant The cis isomers are expected to be the thermodynamically preferred products, whle Wojcicki et al [34] have shown that halogen cleavage reactions of $\left.\mathrm{cis}^{-} \mathrm{Mn}\left({ }^{12} \mathrm{CO}\right) 4^{(13} \mathrm{CO}\right) \mathrm{Me}$ result in a statistical distribution of the labelled carbonyl group in the halide products, $\mathrm{XMn}\left({ }^{12} \mathrm{CO}\right)_{4}\left({ }^{13} \mathrm{CO}\right)$ Thus the intermediate(s) in this type of reaction may be fluxional, as has been previously suggested for compounds of the type $n^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{FeCOLR}$ [1,23-24].

The propensity for mechanistic diversity exhibited by $\underset{\sim}{3}$ in its halogen cleavage reactions is also reminiscent of the iron system $[1,24,25]$ The fact that electrophilic reagents seem to attack both carbon and manganese with equal facility adds an interestina dimension to our earlier suggestion [l] that such attack should occur at the HOMO of the metal complex and, since the HOMO is usually an essentially non-bondinq metal d orbital, that electropholoc attack should normally occur at the metal (1 e an S_{E} (oxidative) process) In the case of compounds of the type $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{R}$, studied previously in great detail $[1,22-26]$, electrophilic attack seems to take place exclusively at the metal rather than at the iron-carbon σ bonding orbital, consistent with the rather large difference of 144 eV ($-33 \mathrm{kcal} / \mathrm{mole}$) between the latter orbltal and the HOMO [35] In the case of the manganese system, however, photolelectror data for the varent methyl compound, $\operatorname{MeMn}(\mathrm{CO})_{5}[36,37]$, suqqest that the enerqy difference between the $H O M O$ and the manganese-carbon o bonding orbital is only $0.84 \mathrm{eV}(\sim 19 \mathrm{kcal} / \mathrm{mole}) \quad$ Although the effects of phosphine substitution on this energy difference are not known, the metal-carbon o bonding orbital is very likely more "available" for interactions with electrophilic reagents than 15 the corresponding orbital in the iron series

ACKNOWLEDGEMENTS

Ue thank Oueen's University and the National Research Council for financial support and Dr D A Slack for many helpful discussions

REFERENCES

1. DA STack and MC Baird, J Am Chem Soc, 98, 5539 (1976) The introduction to this paper provides a brief summary of the pertinent itterature MH Abraham in "Comprehensive Chemical Kinetıcs", Vol 12, edited by C H Bamford and C F H Tipper, Elsevier, New York, 1973
3 We have previously argued' that the oft-invoked S_{E} (cyclic) mechanism is a symmetry-forbidden process with many electrophrles

4 F R Jensen and B Rickborn, "Electrophilic Substitution of Organomercurials", McGraw-Hill Book Company, New York, 1958.
5. D.B Carr and J Schartz, J Am Chem Soc , 99, 638 (1977)

6 M Tada and H Ogawa, Tetrahedron Lett, 2639 (1973)
7 H Shinozakı, H Ogawa and M Tada, Bull Chem Soc Jap. 49, 775 (1976).
8 H L Fritz, J H Espenson, D A Williams and G A Molander, \mathbf{J} Am Chem Soc, 96, 2378 (1974)
9 G N Schrauzer, J H Weber, T M Beckham and R K.Y Ho, Tetrahedron Lett, 275 (1971)
A. Adin and J.H. Espenson, Chem Comm, 653 (1971)
P. Abley, E R. Dockal and J Halpern, J Am Chem Soc, 95, 3166 (1973) FR Jensen and D D Davis, J Am Chem Soc , 93, 4048 (1971)
13 A. Rahm and M Pereyre, J Am Chem Soc , 99, 1672 (1977)
14 M. Gielen and R Fosty, J Chem Research (S), 214 (1977)
15 D Dodd and MD Johnson, Chem Comm., 571 (1971)
16 F R Jensen, V Madan and D H Buchanan, J Am Chem Soc, 93, 5283 (1971)
17 S N Anderson, D H Ballard, J Z Chrzastowski, D Dodd and M D Johnson, Chem Comm, 685 (1972)
I Levitin, A L Sigan and ME Vol'pin, Chem Comm, 469 (1975)
J Halpern, M S Chan, J Hanson, T S Roche and J A Topich, J Am Chem Soc., 97, 1606 (1975)

20 J Halpern, J Topich and K.1 Zamaraev, Inorg Chim Acta, 20, L21 (1976)
21 RH Magnusson, J Halpern, I Y Levitin and ME Vol'pin, Chem Comm, 44 (1978) We thank Professor Halpern for a preprint of this article
22. T G Attig and A Wojcicki, J Am Chem Soc, 96, 262 (1974)
23. H. Brunner and G. Walner, Chem Ber., 109, 1053 (1976)

L J Dizikes and A Wojcicki, J Am Chem. Soc, 99, 5295 (1977)
26. D A S7ack and M.C Baird, Chem Comm, 701 (1974).

27 N A. Dunham and M.C Baird, J Chem Soc, Dalton Trans, 774 (1975)
D Dong, D A Slack and MC Baird, J Orqanometal Chem, 153, 219 (1978)
29. D. Donq, B K Hunter and M C Baird, Chem Comm , 11 (1978) P W Robinson, M A. Cohen and A Wojcicki, Inorg Chem , 10, 2081 (1971)
36. D.L. Lichtenberqer and R F Fenske, Inorg Chem, 13, 486 (1974)

37 B.R. Higginson, D.R Lloyd, S Evans and A F Orchard, J Chem Soc, Faraday Trans II, 1913 (1975)

